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ABSTRACT
Data-driven analysis is important in virtually every mod-
ern organization. Yet, most data is underutilized because it
remains locked in silos inside of organizations; large orga-
nizations have thousands of databases, and billions of files
that are not integrated together in a single, queryable repos-
itory. Despite 40+ years of continuous effort by the database
community, data integration still remains an open challenge.
In this paper, we advocate a different approach: rather

than trying to infer a common schema, we aim to find an-
other common representation for diverse, heterogeneous
data. Specifically, we argue for an embedding (i.e., a vector
space) in which all entities, rows, columns, and paragraphs
are represented as points. In the embedding, the distance
between points indicates their degree of relatedness. We
present Termite, a prototype we have built to learn the best
embedding from the data. Because the best representation
is learned, this allows Termite to avoid much of the human
effort associated with traditional data integration tasks. On
top of Termite, we have implemented a Termite-Join operator,
which allows people to identify related concepts, even when
these are stored in databases with different schemas and in
unstructured data such as text files, webpages, etc. Finally,
we show preliminary evaluation results of our prototype via
a user study, and describe a list of future directions we have
identified.
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1 INTRODUCTION
Data integration – combining diverse data sets, from dif-
ferent organizations or with heterogeneous schemas – has
been a long standing challenge for the database community,
which we continue to struggle with today. At the core of this
challenge is the fact that modern relational query processors
require data to be carefully organized into a uniform schema.
In particular, for relational operators to provide meaningful
results, different columns that reference the same concept
in different data sets must use exactly the same values and
syntax. Duplicates must be eliminated. Values must be nor-
malized. Errors must be cleaned. Although these challenges
have been a boon to academic researchers who have pub-
lished hundreds of papers on each of these topics, they also
mean that most data integration projects are hugely time con-
suming and expensive, and that many data sets that should
be integrated never are due to the complexity of creating
sufficiently uniform data for relational operations to produce
well-defined answers.

In this paper, we advocate an alternative approach. Instead
of insisting on clean data and a standardized schema, we ar-
gue that we should accept that many closely related data sets
will never be fully integrated into a single relational system.
Instead, we propose Termite, a“dirt-loving” database system
that provides as much of the power of declarative querying
as possible, but on top of these non-uniform datasets.

The desiderata for a dirt-loving database are clear:
• It should able to query structured but differently-schema’d
tabular data, retrieving related rows from these different
tables.
• It should be able to relate structured to unstructured data
(i.e., text files), highlighting portions of the text files that
are related to specific records in the structured data.
Termite supports these goals through a novel Termite-Join

capability. Unlike a conventional relational query processor,
where most joins are based on exact equality matches, in
Termite, the join operation retrieves data that is in close
proximity to some input query. That proximity indicates
degree of relatedness, and it is measured as the distance
between vectors of an embedding that represents all cells,
rows, columns from relations as well as text from web pages,
and emails, and other files. These relational embeddings are
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similar to the word embeddings used for modelling language
in text processing [17, 20], but are specially constructed to
work well for tabular datasets that are relational in nature.

The key advantage of the embedding representation is
that because both structured and unstructured data are rep-
resented as points (vectors), understanding whether a tuple
in a relation is related to a text file boils down to measuring
the distance between their vector representation. The key
challenge is to assign vectors to data in such a way that dis-
tance between data points in the embedding indicates data
is indeed related.
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Figure 1: Distance in the embedding indicates related-
ness

Consider the example of Fig. 1, which contains a relation
and an excerpt from Wikipedia. Suppose we want to know
what awards have been granted to professors working at
CSAIL. If we only looked at the table, we would miss the
Godel prize being awarded to Nir Shavit. In the embedding,
the vector representation for Godel prize is close to the vector
for Turing award because: i) it is an award, i.e., it is granted,
or won by someone, and; ii) it is, in this case, awarded to
someone who works at CSAIL. Note that a traditional TF-
IDF based retrieval approach would not be able to identify
this relationship. The Termite-Join operator relates these
two together because they share relationships (granted/won
award) and entities (CSAIL). With Termite, we can build
an embedding on which the Termite-Join operator works
without writing manual rules. Instead, Termite only needs
pairs of elements that are related to each other; the pairs
can be generated automatically from the sentence or tuple
in which the elements appear.
Building the embedding. A principled way of building the
embedding is to represent relational and unstructured data
in some multi-dimensional tensor—which would be very
sparse—where dimensions correspond to the different en-
tities in the data, and then factorize the tensor to obtain a
dense embedding that would contain information about how
the entities are related to each other. This approach is so far
only theoretical because we do not know how to precisely
represent all data in a tensor form, or how to factorize it

in such a way that the resulting embedding possesses the
desired equivalence between vector distance and data relat-
edness. Instead, we propose to learn the embedding directly
from the data. The central theme of this paper is Termite, a
system to train and build the embedding, and an operator,
Termite-Join to query the embedding to relate structured and
unstructured data.
As an initial step towards Termite, we have built a proof

of concept focused on helping with discovery problems. We
conducted a user study to understand the benefits of the
Termite-Join operator to discover data across structured and
unstructured data such as MIT News, Wikipedia, personal
webpages as well as relational data from the MIT dataware-
house and DBPedia. With Termite, users found faster more
relevant content than with a baseline solution consisting of
a full-text search index carefully built. We complement our
evaluation with results on record linkage and concept expan-
sion, two tasks closely related to the discovery problem.

We discuss the Termite’s architecture rationale in section
2, the current learning pipeline in 3, followed by evaluation
results (4), related work 5 and a brief discussion in 6.

2 TERMITE’S ARCHITECTURE
RATIONALE

The idea of building an embedding with Termite was inspired
by the impact of statistical language models such as word
embeddings [17, 20] on the NLP, speech recognition and
information retrieval communities. We quickly discovered
that it is not straightforward to directly use these existing
techniques, mainly because the assumption that all those
models make—that words that appear often together are
related to each other—does not translate to the set-oriented
relational world of tuples, attributes, and tables, which carry
much more structured information. Furthermore, it is not
clear how to merge relational data with unstructured sources.
We have conceptualized the challenges faced by Termite

into 5 loosely coupled components (Fig. 2). Each stage presents
a number of research opportunities. Rather than exploring
in depth each one of them, we decided to first build an end-
to-end prototype so we can learn how the different stages
are interconnected to each other. We describe these stages
and our initial implementation below:
Extraction. The data extraction component converts raw
relations and text into a set of bag-of-words (BoW) represen-
tation, e.g., one BoW per triple extracted from a sentence,
or per cell value from a relation. To do that, it uses different
connectors. For unstructured data, we use state-of-the-art
information extraction platforms such as [10–12] to extract
entity-relationship-entity triples. For relational data, a rela-
tional discovery tool guesses [6, 7] each relation’s key and
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Figure 2: End-to-end overview of the 5 components of the Termite system
uses it along with the attribute values to produce triples, e.g.,
John:value - age:attribute - 22:value.
Encoding. The encoding component transforms each BoW
into a vector. The vectors must be fixed-size so they can be
used as the input to the learning component. A straightfor-
ward fixed-sized representation such as one-hot encoding
has two big drawbacks. First, its dimensionality depends on
the vocabulary size, which is large even for small datasets.
Second, the vocabulary size must be known a-priori in order
to size the vectors, which is inconvenient.

Our encoding component, instead, dictionary-encodes the
vocabulary terms as integers, which are assigned incremen-
tally as new words appear. These integers are indexed into
a fixed-sized vector of length F using a hash function in
1 . . . F . We size the vector to minimize the number of col-
lisions, which can be achieved using the birthday paradox
and the expected number of words per BoW. Because colli-
sions will occur anyway, we make a second attempt to insert
the integer using a different hash function. With this en-
coding strategy we have seen performance improvements
during learning of up to 2 orders of magnitude compared
with one-hot encoding for a vocabulary size of 1M terms.
Learning andRefinement.These components are explained
in detail in section 3. Here, we only mention that given
the current extractor and encoder components, which pro-
duce triples of the form subject-predicate-object, the training
dataset is built by generating pairs from such triples: subject-
predicate, predicate-object and subject-object. The pairs from
the extracted triples are the positive pairs. Suppose we have
positive pairs that always relate a professor to a phone num-
ber, and a phone number to an office. Even if we do not have
an explicit pair relating the professor to the the office, both
entities will appear closer to each other in the embedding:
that’s a key advantage of joining in the embedding.
To obtain negative samples we randomly assemble pairs

that are not part of the positive training set, similar to the
approach used in [3]. This makes it easy to generate negative
pairs, but it introduces anomalies during the learning pro-
cess i.e., unrelated points that end up close to each other not

because they are related, but because they were not explic-
itly provided as negative pairs. The refinement component
ameliorates some of the anomalies.
Serving. The serving component is Termite’s raison d’etre.
It makes the embedding available to answer database queries.
Applications that traditionally take most of the time from
analysts who need to perform them—and that are therefore
not available to organizations without the luxury of ded-
icated analysts—become straightforward to perform if an
embedding is available.
One example is data exploration, which we refer as the

process of visualizing schemas to learn the content they
represent, summarizing relations to get a glimpse of the
information they convey, understanding how two relations
are related to each other without going through the process
of figuring out how to join them. Each of these tasks would
take a long time to solve, but are really simple to solve in a
vector space: 1) plot vectors in a reduced dimensionality to
visualize the schema; 2) find a subset of diverse vectors to
summarize a relation; 3) find vectors from the two relations
we want to join that are close to each other in the embedding.

Another example is the task of discovering how data from
relations and unstructured sources is related to each other.
Useful for discovery, filling missing values and verifying
information that appears in a table among others. This is the
first application we have focused on and the reason for the
Termite-Join operator we have implemented and focus on in
the rest of this paper.

3 BUILDING A GOOD DATA EMBEDDING
We have explained how to transform a collection of text
and relations into a collection of triples. Here, we explain
how to turn the triples into a collection of vectors, (learning
component of Fig. 2) in (3.1). We then explain how to refine
the embedding (component 4 in the figure) and briefly the
Termite-Join operator.

3.1 Obtaining a Basic Embedding
Methods such as [3, 16, 22] consume triples from a knowl-
edge base to learn the latent variables that explain observable
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data, which helps among other tasks, with knowledge base
completion. Our goal is different. We want to learn a dis-
tance metric to measure the relatedness of data coming from
databases and text.

The entities we want to represent are the union of the sets
of subjects, S , predicates, P , and objectsO of the triples, X =
S ∪ P ∪O . We want to find a vector representation for each
entity, f (xi ) |xi ∈ X . In addition, given a distance function,
d (), we want the vector representation of two related entities,
f (xi ) and f (x j ), to be closer to each other according to d ()
than to a third, unrelated vector f (xk ). Finally, our training
data consists of related and unrelated pairs. How can we find
such vector representation f ()?
Can’t we just useWord Embeddings?.Word embeddings
[17, 20] assume that words that appear often together are
related to each other. Using very large text corpora—where
words are used many times in different contexts—it is pos-
sible to learn a vector representation for each word, and
measuring the distance between word vectors, to determine
whether they are similar or not. The notion of similarity
in word embeddings stems from the usage of words in the
same context, e.g., handsome and pretty will be similar to
each other because they are often used together in sentences.
In our setting, we have the advantage of knowing precisely
which entities are related to each other (the pairs): there is
no need to infer this from their appearance together. How-
ever, we also have the disadvantage that entities won’t occur
many times in many different contexts. We need to find an
alternative.
Vector assignment. Our proposal is to frame the assign-
ment of vectors to entities in X as an optimization problem
amenable to learning, so we can train it efficiently by feeding
the pairs we have in the training dataset. In particular we
want to train a deep network that, when given two input
entities, xi and x j , assigns a vector to each of them, f (xi ) and
f (x j ), computes their distance and predicts whether these
two entities are close to each other. Unlike traditional ma-
chine learning models built for generalization, i.e., to predict
output for unseen data, we are only truly interested in the
representation f () learned by the network, so we can use it
to encode our data into the embedding. So, how do we train
f ()?
Deep metric learning. We were inspired by the siamese
networks used in [5] for identifying images of similar faces by
using a metric learned by showing examples of similar faces,
a task known as deep metric learning. We used a network
such as the one in Fig. 3 to learn a metric for data. Once the
network is trained and it has learned f (), we apply it to each
element inX , obtaining the embedding representation of our
data. And with that, we are back into database territory.
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Figure 3: Architecture of the siamese network
3.2 Refining the Embedding
We can use a repertoire of techniques from databases to store,
index and query the embedding efficiently. We are exploring
the best ways to manage and manipulate the embedding, but
in this section we focus on how we can further improve the
embedding quality.
The learned embedding will contain anomalies: vectors

that are close together but are unrelated. This is because
we only use a limited number of negative samples during
training and because of the curse of dimensionality. If we
leave the embedding untouched, we will produce wrong
results when querying it. Next, we explain the technique we
have implemented in the refinement component as well as
ongoing work:
Curse of dimensionality. Since we are working with a
high-dimensional embedding, we suffer from the curse of di-
mensionality [1]. The worst consequence is the phenomenon
known as hubness, which is the tendency of certain points
to be close to many other points. This means that certain
data will be artificially related (close) to a lot of other data,
which is directly against the quality metric we desire for our
embedding.

The good news is that we can largely ameliorate this prob-
lem. The main intuition of our technique is that it is possible
to compute a hubness factor for each entity represented in the
embedding, and then remove entities with a high hubness
factor in the top-k results. In particular, we compute how
many times each point appears close to other points in the
embedding. We then take the 75 percentile of the number of
appearances as a cutoff parameter. At query time, we filter
out those entities of the top-k results with a hubness factor
higher than the cutoff parameter and pad the ranking with
additional entities until we have K elements. Empirically,
this improves the quality of the returned rankings.
Ongoing work: TDA. Can we learn more from the data
once it’s in a vector format? It seems intuitively interesting
to understand the shapes the data forms in the learned em-
bedding, and that may help us further refine the embedding
itself. Whether two or more vectors are related—whether
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they have a shape—boils down to determining if they are
within a specific distance, δ , of each other. Then, if they re-
main close as δ grows, it is possible to determine the strength
of the relationship. Using the same intuition, vectors that do
not remain close may be categorized as noise. Topological
data analysis (TDA) is a mathematical tool that permits rea-
soning about shapes in high-dimensions algebraically. A cen-
tral concept in TDA is persistent homology, which indicates
which shapes remain in the high-dimensional embedding
as δ changes. A straightforward application of persistent
homology to our embedding gives us a degree of confidence
for each of the results of the top-k list, depending on how
persistent they are in the embedding. We are currently inves-
tigating additional applications of the technique, as well as
how to best use TDA to curate the embedding.

3.3 Termite-Join Operator
Given an input entity, Termite-Join returns the K closest
entities in the embedding. All entities representations in the
embedding are computed offline by feeding the entities to
the learned network and obtaining their representation.

At query time, given an input query xi : 1) Obtain the em-
bedding representation, f (xi ) from the collection. 2) Retrieve
the K-closest vectors to f (xi ) from the collection. 3) Remove
each ki ∈ K whose hubness factor is beyond the cutoff pa-
rameter computed by the refinement component. 4) Fill in
the top-K list if some element has been removed in step 3.
5) Obtain the string representation of the top-k vectors and
present the results to the user.

4 EARLY EXPERIENCE
We demonstrate how Termite helps users identify related
data across heterogeneous schemas and unstructured data
(section 4.1). Then, we show additional microbenchmark
results on record linkage and concept expansion (4.2).
Dataset and setup.We built a dataset with information of
faculty at CSAIL. The dataset contains both structured data
with different schemas, e.g., MIT datawarehouse and DB-
Pedia, as well as unstructured data, e.g., Wikipedia pages,
online news articles. We then used Termite to learn the em-
bedding, using a laptop with 4 cores, 8GB RAM and without
access to a GPU. The whole process took around 1 hour.

4.1 Data Discovery with Termite-Join
We did a user study to evaluate Termite-Join:
Study Goals. The goals of the study were to determine: i)
whether the embedding is an appropriate abstraction to dis-
cover data across structured and unstructured data sources;
and ii) whether the semantic distance learned is more appro-
priate for discovery tasks than a traditional full-text search
interface based on TF-IDF relevance.

To answer these questions, we built two different inter-
faces to discover data. One of them, Full-Text-Search (FTS),
receives all the data from the data extractor from Fig. 2 and
indexes it in elasticsearch [9]. FTS has an API to perform
keyword queries and find the matching documents from the
system. The second interface, Termite-Search (TMT) is built
on top of the embedding. It is similar to the first in that
people can query with keywords, but those keywords are
used as input to the Termite-Join operator. Our goal was to
understand which interface was better for a set of discovery
tasks we describe next.
Study Procedure. We recruited 8 users with a CS back-
ground and that are daily users of web search engines. We
asked them to solve 3 tasks. The first is used as a training
exercise, and the remaining two, (Task 1 and Task 2), are
part of the experiment. We split the users in two groups of 4
people each, and showed a different interface to each group
to avoid cross-learning effects, i.e., a person learning the
results with one interface and reverse engineering the right
query when using the second interface. We then measured
the coverage of the results obtained by each group and asked
for their feedback on both the questions and the interfaces
they used.
We gave each user a 7 minute introduction to the corre-

sponding interface, along with an example walk-through to
illustrate the process. An experimenter was present at all
times with the user, to clarify questions about the task goal,
as well as to suggest ways of using the API when the user
had doubts. We first explained the example task, without
telling them it was an example. Users were asked to create a
list of forms of recognition (i.e., awards) that have been given
to CSAIL faculty. We asked the users to write their results
in a text file, and explained that they could make as many
search requests as they needed. We let them use the interface
for 5 minutes (we did not stop them abruptly if they were
engaged in preparing a query) and then moved on to the
next two tasks: Task 1: Create a list of contributions associated
with CSAIL faculty; and Task 2: A list of institutions associated
with CSAIL faculty.
Results. The users of TMT were far more successful than
the users of FTS as the results of table 1 demonstrate. The
table shows the percentage of results found by the users
when using each interface, distinguishing between the worst
result achieved by any of the 4 users using the same interface
and the average one. Remarkably, for Task 1, the users that
used TMT found a query that led to all results. In the case
of Task 2, only one user found all of them. We measured
the time the users took to perform each task and found that
users of TMT took 2 min less on average than users of FTS.
The times were similar, however, for Task 2.
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Table 1: Results from User Study

FTS TMT
(worst,
avg)

Avg.
Time

(worst,
avg)

Avg.
Time

Task 1 1%, 27% 6.1m 100% 4.2m
Task 2 9%, 18% 5.1m 18%, 43% 5.3m

When we asked the users for the difficulty of the different
tasks they were solving, users of FTS were consistent in
finding Task 1 harder than Task 2, and Task 2 harder than
the example task. The users of TMTmentioned that all three
tasks were similarly simple.
Examples. We show example results obtained by users of
both interfaces in table 2 for both tasks. For Task 1, the users
of TMT found algorithmic contributions, such as LSH, Zero-
knowledge proof when inserting software artifacts such as
Vertica or Postgres, see the second column of table 2. Users of
FTS had to guess keywords that would indicate contributions,
and this led naturally to a lower recall. Similar results were
found in the case of Task 2, in which users of the FTS had to
try different keywords such as university, degree, while users
of TMT quickly identified that using a known example, e.g.,
Harvard led quickly to many other relevant results.
Conclusion.With TMT, users discover relevant information
for their tasks from both unstructured and structured sources
more efficiently and easier than with a full-text search index.

4.2 Record Linkage and Concept
Expansion

Record Linkage [15] is about finding syntactically distinct
records that refer to the same real-world entity, e.g., Samuel
R. Madden and SamMadden. Concept Expansion [27] is about
obtaining instances of a given concept, e.g., given Harvard,
obtain MIT, Caltech, Stanford, etc. Our hypothesis is that
Termite-Join can help with these tasks. To understand this
empirically, we retrieved ground truth for both tasks on
the same CSAIL faculty dataset mentioned above, and then
implemented functions on Termite to perform each task. We
discuss the results next:
Record Linkage. Our dataset contains 52 faculty members.
The minimum number of representations for each faculty
member was 2, the average 4, and the maximum was 7. In
total there are 210 different representations for the 52 fac-
ulty. To conduct this experiment we take one representation
of each member and use it to query the embedding with
the Termite-Join operator. We then measure how many of
the found results are true alternative representations of the
original query. We could identify 77% (163/210) different
representations used to refer to CSAIL faculty.
In particular, the Termite identifies different spellings of

faculty such as David DeWitt and Dave DeWitt, as well as

those that include middle names, such as David J. DeWitt.
More important, the embedding helped to identify entities
that were not syntactically similar, such as Liskov and Bar-
bara Jane Huberman. The first appears in the relational data,
while the last name only appears in an unstructured source,
but since both representations share relationships and enti-
ties they are placed closed to each other in the embedding.
Concept Expansion. For this experimentwe compiled ground
truth following a procedure similar to the one described in
[27]. We found instances of the same concept for 10 different
concepts, which are shown in the first column of table 3. The
concepts had a number of instances that ranged from 10 to
80. Unlike the original definition of the concept expansion
problem [27], which takes both a concept and an example
instance as input, we only provide an example instance to
the Termite-Join operator. We then run queries retrieving
lists of different sizes, 2 and 4 times the size of the original
(referred to as 2x Top and 4x Top in the table), and reporting
the total percentage of values in the ranking result that were
correct. The first query returns a list of size equal to the
number of instances for the concept. The second and third
query subsequently double the previous size.
Conclusions. The best news is that we obtained these re-
sults by only pointing out Termite to a data repository. No
manual domain-specific engineering was necessary.

5 RELATED WORK
Automatic Knowledge Base Completion. RESCAL [16]
models triples from a knowledge base via the pairwise inter-
actions of latent features. Similarly, Structured Embeddings
and subsequent work [3, 4, 22] learns embeddings for each
relation from the triples. These approaches focus on learning
the latent variables that describe the triples, to later fill in
values of an incomplete knowledge base. In contrast, Termite
learns a metric we use to relate structured and unstructured
data based on their distance in the embedding.
Universal schema. [21, 26] decomposes a matrix in which
rows represent entity pairs and columns represent relations
between entities. Similar to our embedding, they show how
to jointly embed text and knowledge bases. They are not
focused on data discovery, but rather information extraction
applications.
Word Embeddings and Relational Data. In [2], the au-
thors propose a method to learn a vector representation of
data items from relational data based on word embeddings
[17], and then use those vectors to augment traditional SQL
queries with so-called cognitive capabilities such as finding
elements within a column or row that are similar to an in-
put data item. In contrast, our embedding’s goal is to find a
relatedness metric for discovery applications beyond only
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Table 2: Example results by users of the study

Task 1: Contributions of CSAIL Faculty Task 2: Associated Organizations of CSAIL Faculty
FTS TMT FTS TMT

arvind co founded company

Robert_Tappan_Morris
Y_Combinator_(company)

stonebraker focused aurora

hari balakrishnan commercializing
research medusa/aurora project

Shor’s_algorithm, karger algorithm
Chord_(peer-to-peer), haystack project
simultaneous multithreading
Multics, VoltDB, Ingres_(database)
Wait-free, Public-key
Zeroknowledge_proof
RSA_(algorithm)
Alloy_(specification_language)
MOOC
(aprox. 25 more results)

morris delbarton school
dewitt university michigan
morris harvard university
demaine phd university waterloo
meyer phd harvard university

Princeton_University
California_Institute_of_Technology
University_of_Pennsylvania
University_of_California _Berkeley
Stanford_University
Colgate_University
Carnegie_Mellon_University
massachusetts institute technology
La_Sapienza_University_of_Rome
University_of_Michigan
IBM_Almaden_Research_Center
Rice_University, harvard university
(aprox. 10 more results)

Table 3: Results for concept expansion

Concept #
Instances

Found
Top

Found
2x Top

Found
4x Top

known
for 77 27

35%
46
59%

65
84%

faculty
name 52 30

57%
46
88%

51
98%

Institutions 44 26
59%

33
75%

37
84%

birth
place 35 14

40%
18
51%

24
68%

award 33 19
57%

24
72%

28
84%

academic
children 54 41

75%
53
98% —

field 21 13
61%

14
66%

16
76%

nationality 10 10
100% — —

doctoral
advisor 31 12

38%
16
51%

23
74%

thesis title 19 8
42%

13
68%

16
84%

relational data. Our embedding could be applied to extend
SQL queries as well, which is interesting future work.
Other related techniques. There are a myriad of applica-
tions in NLP which share some characteristics with out goal
of learning a good embedding of both structured and unstruc-
tured data. We can benefit from: i) sequence learning [13, 24],
ii) alternative deep metric methods [14, 23]; iii) alternative
embedding methods such as holographic [19] and hyperbolic
embeddings [8]. A recent paper [18] explores deep learning
for entity resolution, a common data integration task. Ter-
mite’s focus is on leeting users operate on structured and
unstructured data without a high upfront cost.

6 RESEARCH AGENDA
In this paper we have shown how, by operating on a vector
space, we can understand relationships between structured
and unstructured data sources. We have evaluated Termite,
our proof of concept, with a few common applications in
data integration as well as with a user study. The applica-
tions of embedding data into a common vector space, as well
as the challenges of doing so, however, span beyond what
we presented here. We use the remainder of this section to
present challenges and additional applications:
• Learning a relational embedding.
The siamese network presented in this paper permitsmerg-
ing relations and text easily, but it is slow to train. We
have performed preliminary results with neural network
architectures designed for modeling language, such as
Skipgram and continuous bag of words (CBOW), which
are simpler and therefore faster to train. Adapting these
models to work with structured data is not trivial because
they have been designed to use the sequence nature of
text and not the row- and column-wise relationships rep-
resented in tables. One important challenge, then, is to
understand the different learning solutions and identify
tradeoffs between different models.
• Cleaning embeddings. All of the learning methods we
consider lead to high dimensional vector spaces. Oper-
ating on these spaces is challenging for several reasons.
First, we suffer from the hubness problem [25], where
spurious vectors appear to be close to most other vectors.
This behavior interferes with out goal of relying on dis-
tance between vectors to understand properties of the
underlying data. A challenge in this setting is to detect
and clean hubs from the embedding efficiently. For that,
we are exploring techniques from shape analysis as well
as topological data processing, which we think may help
us identify and correct errors in data.
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• Reducing storage overheadBecause every token ismapped
to a high dimensional vector, we suffer a severe storage
overhead (sometimes up to 20x) because we need to store
many floating points in addition to the original token.
We cannot learn a low dimensional embedding directly
because we need high capacity networks to learn good
embeddings. However, once we possess the high dimen-
sional embedding, it is possible to apply dimensionality
reduction techniques to reduce the storage overhead. The
challenge at this point is to apply the dimensionality re-
duction techniques on millions of vectors, a process that
becomes too slow. To tackle this problem, we are exploring
techniques to reduce the dimensionality of a sample of the
data only, and then derive vectors in a low dimensional
space by taking into consideration the relative distance of
points in the original embedding.
• Identifying intrinsic evaluation criteria. In this paper
we have measured the quality of the learned embedding
by using downstream tasks that are well defined, and for
which we can compare metrics easily. An open question
is whether we can identify features of vector embedding
we can use to perform intrinsic evaluations, which would
help with speeding up the rate of innovation.
Despite the challenges, we are motivated to pursue this

line of work, not only because of the promise of merging
structured and unstructured data, but also because the promise
of many other applications which we briefly discuss here:
• Database exploration. Many techniques exist to explore
databases, from clustering of tables, to summarizing rela-
tions, to visualizing what tables look more like each other,
and many more. Each of these applications requires the
design an implementation of a system. We are exploring
how we can translate all the previous applications into
mere vector operations, and therefore simplify the data-
base exploration process end to end.
• Statistics retrieval. Databases, and in particular, query
optimizers, rely on data statistics to perform well their job.
A relational embedding captures data properties that can
be beneficial to databases.
• Performance benchmarking. When customers of com-
mercial databases have a performance problem and the
vendors are not allowed to see the data, troubleshooting
the underlying problem becomes difficult. To tackle this
problem we can train a generative model from the embed-
ding, and then use the generativemodel to create databases
of different sizes for benchmarking. Furthermore, we can
prevent certain security risks by obfuscating the tokens
in the dictionary that maps them to vectors.

We believe the vision exposed in this paper along with
the encouraging results justify investing more time in un-
derstanding how a vector representation of data may benefit
difficult data management problems.
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